Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Biol ; 125(4): 326-345, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33766311

RESUMO

Metal trace elements accumulate in soils mainly because of anthropic activities, leading living organisms to develop strategies to handle metal toxicity. Plants often associate with root endophytic fungi, including nonmycorrhizal fungi, and some of these organisms are associated with metal tolerance. The lack of synthetic analyses of plant-endophyte-metal tripartite systems and the scant consideration for taxonomy led to this review aiming (1) to inventory non-mycorrhizal root fungal endophytes described with respect to their taxonomic diversity and (2) to determine the mutualistic roles of these plant-fungus associations under metal stress. More than 1500 species in 100 orders (mainly Hypocreales and Pleosporales) were reported from a wide variety of environments and hosts. Most reported endophytes had a positive effect on their host under metal stress, but with various effects on metal uptake or translocation and no clear taxonomic consistency. Future research considering the functional patterns and dynamics of these associations is thus encouraged.


Assuntos
Endófitos , Filogenia , Ascomicetos , Endófitos/genética , Fungos/genética , Raízes de Plantas , Plantas , Simbiose
2.
Environ Monit Assess ; 192(11): 673, 2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33011855

RESUMO

Plant responses to heavy metals and their storage constitute a crucial step to understand the environmental impacts of metallic trace elements (MTEs). In controlled experiments, we previously demonstrated the tolerance and resilience of Japanese knotweed to soil artificial polymetallic contamination. Using the same experimental design, we tested here the effect of three individual MTEs on Fallopia × bohemica performance traits. Rhizome fragments from three different sites (considered as distinct morphotypes) were grown in a greenhouse for 1 month on a prairial soil artificially contaminated with either Cd, Cr (VI) or Zn at concentrations corresponding to relatively highly polluted soils. Our results confirmed the high tolerance of Bohemian knotweed to metal stress, though, plant response to MTE pollution was dependant on MTE identity. Bohemian knotweed was stimulated by Cr (VI) (increased root and aerial masses), did not display any measurable change in performance traits under Cd at the high dose of 10 mg kg-1, and uptook all MTEs in its rhizome, but only Zn was transferred to its aerial parts. We also highlighted changes in root secondary metabolism that were more accentuated with Zn, including the increase of anthraquinone, stilbene and biphenyl derivatives. These results compared to multi-contamination experiments previously published suggest complex interactions between metals and plant, depending principally on metal identity and also suggest a potential role of soil microbes in the interactions.


Assuntos
Fallopia , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Cádmio , Monitoramento Ambiental , Metabolismo Secundário , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...